NYC Taxi data

Import cuxfilter

[1]:
from cuxfilter import charts
import cuxfilter
from bokeh import palettes
from cuxfilter.layouts import double_feature

import cudf
[2]:
#update data_dir if you have downloaded datasets elsewhere
DATA_DIR = './data'

Download required datasets

[3]:
from cuxfilter.sampledata import datasets_check
datasets_check('nyc_taxi', base_dir=DATA_DIR)
Dataset - ./data/nyc_taxi.csv

dataset already downloaded

preprocess the data

[4]:
!pip install pyproj

cudf_df = cudf.read_csv('./data/nyc_taxi.csv')

from pyproj import Proj, transform

inProj = Proj(init='epsg:4326') # Latitude and longitudes
outProj = Proj(init='epsg:3857') # 2D projected points

cudf_df['dropoff_x'], cudf_df['dropoff_y'] = transform(inProj, outProj, cudf_df['dropoff_longitude'].to_array(), cudf_df['dropoff_latitude'].to_array()) # Apply transformation

cudf_df = cudf_df.drop(['dropoff_latitude', 'dropoff_longitude'], axis=1)
cudf_df = cudf_df.dropna(axis=0)


cudf_df = cudf_df[(cudf_df.dropoff_x > -8239910.23) & (cudf_df.dropoff_x < -8229529.24) & (cudf_df.dropoff_y > 4968481.34) & (cudf_df.dropoff_y < 4983152.92)] # Filter over Manhattan


cudf_df.head()
Requirement already satisfied: pyproj in /home/ajay/anaconda3/envs/cudf_0.10/envs/test_new/lib/python3.7/site-packages (2.4.1)
[4]:
VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count trip_distance pickup_longitude pickup_latitude RateCodeID store_and_fwd_flag payment_type fare_amount extra mta_tax tip_amount tolls_amount improvement_surcharge total_amount dropoff_x dropoff_y
0 2 2015-01-15 19:05:39 2015-01-15 19:23:42 1 1.59 -73.993896 40.750111 1 N 1 12.0 1.0 0.5 3.25 0.00 0.3 17.05 -8.234835e+06 4.975627e+06
1 1 2015-01-10 20:33:38 2015-01-10 20:53:28 1 3.30 -74.001648 40.724243 1 N 1 14.5 0.5 0.5 2.00 0.00 0.3 17.80 -8.237021e+06 4.976875e+06
3 1 2015-01-10 20:33:39 2015-01-10 20:35:31 1 0.50 -74.009087 40.713818 1 N 2 3.5 0.5 0.5 0.00 0.00 0.3 4.80 -8.238124e+06 4.971127e+06
4 1 2015-01-10 20:33:39 2015-01-10 20:52:58 1 3.00 -73.971176 40.762428 1 N 2 15.0 0.5 0.5 0.00 0.00 0.3 16.30 -8.238108e+06 4.974457e+06
5 1 2015-01-10 20:33:39 2015-01-10 20:53:52 1 9.00 -73.874374 40.774048 1 N 1 27.0 0.5 0.5 6.70 5.33 0.3 40.33 -8.236193e+06 4.976740e+06

Read the dataset

[5]:
cux_df = cuxfilter.DataFrame.from_dataframe(cudf_df)

Define charts

[6]:
from bokeh.tile_providers import get_provider as gp
tile_provider = gp('CARTODBPOSITRON')

Uncomment the below lines and replace MAPBOX_TOKEN with mapbox token string if you want to use mapbox map-tiles. Can be created for free here -https://www.mapbox.com/help/define-access-token/

[7]:
#from cuxfilter.assets.custom_tiles import get_provider, Vendors
#tile_provider = get_provider(Vendors.MAPBOX_LIGHT, access_token=MAPBOX_TOKEN)
[8]:
chart1 = charts.datashader.scatter_geo(x='dropoff_x',
                                         y='dropoff_y',
                                         aggregate_fn='count',
                                         tile_provider=tile_provider, x_range=(-8239910.23,-8229529.24), y_range=(4968481.34,4983152.92))

chart2 = charts.bokeh.bar('passenger_count', data_points=9)

Create a dashboard object

[9]:
d = cux_df.dashboard([chart1, chart2], layout=double_feature, theme=cuxfilter.themes.rapids, title= 'NYC TAXI DATASET')
[10]:
#dashboard object
d
[10]:

Starting the dashboard

  1. d.show(‘current_notebook_url:current_notebook_port’) remote dashboard

  2. d.app(‘current_notebook_url:current_notebook_port’) inline in notebook (layout is ignored, and charts are displayed one below another)

Incase you need to stop the server:

  • d.stop()

[11]:
# preview
await d.preview()
../_images/examples_NYC_taxi_example_20_0.png

Export the queried data into a dataframe

[12]:
queried_df = d.export()
no querying done, returning original dataframe