Column object#
- class legate_dataframe.lib.core.column.LogicalColumn(obj: Any)#
Logical column distributed between legate nodes
Underlying a logical column is a logical array. The column doesn’t own the array, a logical array can be part of multiple columns.
A column may represent columnar or scalar data. For a scalar column
column.scalar()
isTrue
and it has always one row.- add_as_next_task_input(self, task: AutoTask) None #
Add a logical column to the next input task argument
This should match a call to get_next_input<PhysicalColumn>() by a legate task.
Note
The order of “add_next_*” calls must match the order of the corresponding “get_next_*” calls.
- Parameters:
task – The legate task to add the argument.
- add_as_next_task_output(self, task: AutoTask) None #
Add a logical column to the next output task argument
This should match a call to get_next_input<PhysicalColumn>() by a legate task.
Note
The order of “add_next_*” calls must match the order of the corresponding “get_next_*” calls.
- Parameters:
argument. (The legate task to add the)
- dtype(self) DtypeObj #
Returns the cudf data type of the row elements
- Return type:
The cudf data type
- static empty_like_logical_column(LogicalColumn col) LogicalColumn #
Create a new unbounded column from an existing column.
- Parameters:
other (LogicalColumn) – The prototype column.
- Return type:
The new unbounded column with the type and nullable equal other
- static from_cudf(col_or_scalar) LogicalColumn #
Create a logical column from a local cudf column or column.
This call blocks the client’s control flow and scatter the data to all legate nodes. If the input is a
DeviceScalar
the column will be marked as scalar.- Parameters:
col – cudf column
- Return type:
New logical column
- get_logical_array(self, *, check_dtype=False) LogicalArray #
Return the underlying logical array
- Parameters:
check_dtype – If
True
check that the dtype round-trips. Defaults to False.- Return type:
The underlying logical array
- Raises:
TypeError – If
check_dtype=True
and the column dtype is not a native legate data type.
- is_scalar(self)#
- num_rows(self) int #
Returns the number of rows.
- Return type:
The number of rows
- Raises:
RuntimeError – if column is unbound
- offload_to(self, cpp_StoreTarget target_mem)#
Offload the underlying data to the specified memory.
This method offloads the underlying data to the specified target memory. The purpose of this is to free up GPU memory resources. See
legate::LogicalArray::offload_to()
for more information.- Parameters:
target_mem (legate.core.StoreTarget) – The memory kind to offload to. To offload to the CPU use
legate.core.StoreTarget.SYSMEM
.
- repr(self, size_t max_num_items=30) str #
Return a printable representational string
- Parameters:
max_num_items (int) – Maximum number of items to include before items are abbreviated.
- Return type:
Printable representational string
- to_array(self, *, writeable=False)#
Return a view into the column data.
This method returns a cupynumeric array viewing the columns data. For non-nullable columns
cupynumeric.asarray(column)
should also work directly.- Parameters:
writeable (bool) – By default sets the cupynumeric array not not writeable since columns are normally immutable. This can be overridden by passing
True
.- Returns:
A 1-d cupynumeric array.
- Return type:
array
- Raises:
TypeError – If the dtype is unsupported by cupynumeric.
ValueError – If the column has a mask and there are masked values.
- to_cudf(self) cudfColumn #
Copy the logical column into a local cudf column
This call blocks the client’s control flow and fetches the data for the whole column to the current node.
- Return type:
A cudf column that owns its data.
- to_cudf_scalar(self) DeviceScalar #
Copy the logical column into a local cudf scalar
This call blocks the client’s control flow and fetches the data for the scalar. To succeed the column must have length one. Columns for which
column.scalar()
isTrue
always have length 1.- Return type:
A cudf scalar that owns its data.
- Raises:
ValueError – If the column is not length 1 (scalar columns always are).